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EVOLUTION OF COLD DENSE NUCLEAR MATTER
E.F.Hefter*V.G.Kartavenko

A simple analytical model is presented to describe the time evolution
of cold compressed nuclear systems. The inverse meanfield method has
been used. A one-dimensional three-level system is analysed in detail.
Inverse methods are shown to give us the opportunity to predict the
(nonlinear) evolution of cold dense nuclear systems.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.

IBOJIOLMA XOJIOJHOTO CXKATOrO ANEPHOIO BelIeCTBa
9.0 .Xedrep, B.I'.KapraBeH ko

IlpencraBnena npocrad aHaTMTHYECKAA MOMENb [UIA ONHMCAHHA
3BOJIIOLMA CXKAThIX XOJIONHBIX AAEPHBIX cHcTeM. Mcronbaosan meton
o6paTHOM 3a/1auM [IA CpeIHero NonA Anpa. JleTaHO NpOaHATH3KPO-
BaHa OTHOMEPHAA TpeXypoBHeBas cHcTeMa. Ilokasano, 4to MeTOmHKA
0GpaTHOH 3a0ayd MO3BONAET MPEACKa3aTh HEMHEHHYI0 IBOJIOIMIO
XOJIOOHBIX CXKATBIX AXEPHBIX CHCTEM.

Pabora sbinonHena B JIaGoparopuu teopernueckuii pusmcu OUAU.

1. INTRODUCTION

In recent studies 1/ the time evolution of initially compressed
nuclear matter has been studied within the time-dependent Hartree-Fock
approach. Obviously this problem is of a more general interest 728/ so
that we would like to reconsider it from a different point of view. We
should also like to draw attention to the way in which hydrodynamics
does predict the production of composites (or clusters), in contrast
to the statement of /1/, this is possible via a mechanism known for about
150 years.

Starting from hydrodynamical considerations, several groups deriv-
ed, in differential ways and independently, the soliton-supporting non-
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linear Schrédinger and Korteweg — de Vries (KdV) equations at appro ti-
ate evolution equations for density distributions in nuclear matter /7-107
A more comprehensive and general interpretation of the KdV

equation emerged in connection with the application of inverse methods
to the nuclear bound state problem, see /11/ and references therein.
This so-called inverse mean-field method (Imefim) has been demonstra-
ted io yield useful information of nuclear radii 712/ the optical poten-
tial/13/ | and on nuclear dynamics/14/. It has been proposed to des-
cribe also the equilibration of finite nuclear systems /157,

In this communication, based on the mean field picture, we present
a simple analytical model for the time evolution of compressed nuclear
matter.

2. BASIC EQUATIONS OF THE INVERSE
MEAN FIELD METHOD

By now it is well known that the appropriate procedure for discus-
sing the characteristics of nonrelativistic quantum mechanical systems
is to solve the respective time-dependent many-body Schrédinger equa-
tion. However, we are not able to handle this problem adequately but
for computer experiments. A prominent way of circumventing most of
the associated difficulties is not resort to the physically motivated
mean-field picture. It assumes that all particles of the system generate
a common mean field U(x,t) in which they move rather independently.
Thus, the many-body Schrodinger equation is reduced to a set of single-
particle Schridinger equations:
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where all symbols have their usual meanings. For the sake of simplicity,
below we consider only one-dimensional systems (which, are under the
appropriate conditions equivalent to three-dimensional spherically
symmetrical ones). Application of inverse methods and of techniques
from nonlinear physics leads within Imefim to the notion to use for
(conservative) time-dependent problems instead of (1) the following
system of coupled equations 711/ :
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The £, are constants which are determined by the initial condi-
tions and N(n =1,2,...,N) is the number of the bound states.

Details of the Imefim and the derivations of the resulting formulas
(2,3) may be taken from /11-18/ and references.

Applying inverse methods, we have to evaluate the function K(x,y)

by solving the (Gelfand — Levitan — Marchenko) integral equa-
tion /16-19/ .

K(x,y) +B(x+y) + [ B(y+2)K(x, z)dz = 0. (4)
X

The kernal B is determined by the reflection coefficients R(k) (E =

= h?k?/2m) and by the N bound-state eigenvalues (E, = —hgxﬁ /2m):

B(z) = z C (K )exp( o - K Z) +
n=1 00 m2c a
(5)
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The coefficients C,, are uniquely specified by the boundary condi-
tions:
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and the wanted potential U(x,t) is given by:

2
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By knowing all bound-state energy eigenvalues and reflection coefficients
(phase-shifts), the integral equation (4) can be solved only numerically.
However, in the case of reflectionless (R(k) = 0) potentials the problem
is well known to have the analytical solution (for symmterical (U(x,0) =
= U(-x,0)) potentials):
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A glance at (8) shows that wave functions, potential and densities are
uniquely determined by N energy eigenvalues.

3. THREE-LEVEL SYSTEM

Although there difinitely is some progress in the application of
inverse methods to nuclear physics /11-18:21/ | they are not yet too
popular. As an illustration for the work of these methods, we consider,
in this section, a one-dimensional three-level system in detail. Simplest
onelevel and two-level systems 720/ have been analysed earlier.
A three-level system may be useful for modelling the evolution of light
nuclei, for instance, of oxygen /1.

Let us present the main formulas to calculate wave functions of
the three-level system (« g>Kg > Ky )
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The asymptotic behaviour of the wave functions and the potential has
the following form ( £, is fixed):
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So, for large x and t the time-dependent one-body potential and
density distribution are represented by a set of solitary waves. The
energy spectrum of an initially compressed system completely deter-
mines widths, velocities and phase shifts (£7) of the solitons.

In (8-10) the constants £, entering into (3) should be calcula-
ted from the ground state spectrum for a given nuclear system. It leads
to a renormalization of the velocities of the solitons. The qualitative
picture of the evolution remains unchanged.

The initially compressed system expands so that for large times
one observes separate density solitons. This picture is in accordance
with the time-dependent Hartree-Fock simulation of the time evolution
of a compressed 18 O nucleus’!’. The disassembly shows collective
flow and clusterization.

4. SUMMARY

Attention has been drawn to the fact that inverse methods lead
to a simple analytical model for the qualitative time evolution of cold
compressed nuclear metter. The exact numerical solution could even
be applied for a quantitative treatment.
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